Label noise is ubiquitous in various machine learning scenarios such as self-labeling with model predictions and erroneous data annotation. Many existing approaches are based on heuristics such as sample losses, which might not be flexible enough to achieve optimal solutions. Meta learning based methods address this issue by learning a data selection function, but can be hard to optimize. In light of these pros and cons, we propose Selection-Enhanced Noisy label Training (SENT) that does not rely on meta learning while having the flexibility of being data-driven. SENT transfers the noise distribution to a clean set and trains a model to distinguish noisy labels from clean ones using model-based features. Empirically, on a wide range of tasks including text classification and speech recognition, SENT improves performance over strong baselines under the settings of self-training and label corruption.
translated by 谷歌翻译
Missing data are ubiquitous in real world applications and, if not adequately handled, may lead to the loss of information and biased findings in downstream analysis. Particularly, high-dimensional incomplete data with a moderate sample size, such as analysis of multi-omics data, present daunting challenges. Imputation is arguably the most popular method for handling missing data, though existing imputation methods have a number of limitations. Single imputation methods such as matrix completion methods do not adequately account for imputation uncertainty and hence would yield improper statistical inference. In contrast, multiple imputation (MI) methods allow for proper inference but existing methods do not perform well in high-dimensional settings. Our work aims to address these significant methodological gaps, leveraging recent advances in neural network Gaussian process (NNGP) from a Bayesian viewpoint. We propose two NNGP-based MI methods, namely MI-NNGP, that can apply multiple imputations for missing values from a joint (posterior predictive) distribution. The MI-NNGP methods are shown to significantly outperform existing state-of-the-art methods on synthetic and real datasets, in terms of imputation error, statistical inference, robustness to missing rates, and computation costs, under three missing data mechanisms, MCAR, MAR, and MNAR.
translated by 谷歌翻译
因果关系的概念在人类认知中起着重要作用。在过去的几十年中,在许多领域(例如计算机科学,医学,经济学和教育)中,因果推论已经得到很好的发展。随着深度学习技术的发展,它越来越多地用于针对反事实数据的因果推断。通常,深层因果模型将协变量的特征映射到表示空间,然后设计各种客观优化函数,以根据不同的优化方法公正地估算反事实数据。本文重点介绍了深层因果模型的调查,其核心贡献如下:1)我们在多种疗法和连续剂量治疗下提供相关指标; 2)我们从时间开发和方法分类的角度综合了深层因果模型的全面概述; 3)我们协助有关相关数据集和源代码的详细且全面的分类和分析。
translated by 谷歌翻译
目的:我们提出了一个正式的框架,用于使用统一的运动原始图(MPS)作为基本手术动作来建模手术任务,以实现不同数据集的更客观的标记和聚集,并培训通用模型,以实现手术动作识别。方法:我们使用我们的框架来创建上下文和运动原始骨料外科手术集(指南针),包括来自三个公共可用数据集(拼图,桌子,桌子和Rosma)的六个干燥LAB手术任务标签。提出了标记手术环境和自动转换为MPS的方法。我们提出了一项任务(Loto)交叉验证方法,以评估模型概括为看不见的任务的能力。结果:我们的上下文标签方法达到了众包的共识标签与专家外科医生之间的几乎完美的一致性。对MPS的任务进行分割,可以生成单独的左右笔录,并显着改善Loto的性能。我们发现,如果对具有相同上下文的任务和/或来自同一数据集的任务进行了培训,则MP细分模型的性能最佳。结论:所提出的框架可以基于上下文和细粒度的MPS对外科数据进行高质量的标记。使用MPS对外科手术任务进行建模可以使不同数据集的汇总用于训练动作识别模型,这些模型可以比在手势级别训练的模型更好地概括地看不见的任务。意义:我们的正式框架和汇总数据集可以支持用于手术过程分析,技能评估,错误检测和自治的模型和算法的开发。
translated by 谷歌翻译
机器的图像编码(ICM)旨在压缩图像进行AI任务分析,而不是满足人类的看法。学习一种既是一般(用于AI任务)的特征,也是紧凑的(用于压缩)的功能,这对于其成功而言至关重要。在本文中,我们试图通过学习通用功能,同时考虑压缩来开发ICM框架。我们将诸如无所不能功能和相应框架的功能命名为Omni-ICM。考虑到自我监督学习(SSL)提高了特征的概括,我们将其与压缩任务集成到OMNI-ICM框架中,以学习无所不能的功能。但是,在SSL中协调语义建模并在压缩中删除冗余是不平凡的,因此我们通过合作实例区分和熵最小化以自适应掉落的信息来设计新颖的信息过滤(如果)模块,以较弱相关的信息执行AI任务(例如,某些纹理冗余)。与以前的特定解决方案不同,Omni-ICM可以直接基于学习的无能功能的AI任务分析,而无需联合培训或额外的转换。尽管简单而直观,但Omni-ICM在多个基本愿景任务上大大优于现有的传统和基于学习的编解码器。
translated by 谷歌翻译
在本文中,我们介绍了第一个神经视频编解码器,可以在用于低延迟模式的UVG数据集上的SRGB PSNR方面与最新编码标准H.266 / VVC竞争。现有的神经混合视频编码方法依赖于用于预测的光流或高斯尺度流,这不能支持对不同运动内容的细粒度适应性。为了更具内容 - 自适应预测,我们提出了一种新颖的跨尺度预测模块,实现更有效的运动补偿。具体地,一方面,我们生产参考特征金字塔作为预测源,然后传输利用特征尺度的横级流来控制预测的精度。另一方面,我们将加权预测的机制介绍到具有单个参考帧的预测场景的机制,其中发送交叉尺度权重映射以合成精细预测结果。除了串尺度预测模块之外,我们还提出了一种多级量化策略,这提高了在推理期间没有额外计算惩罚的速率失真性能。我们展示了我们有效的神经视频编解码器(ENVC)对几个常见的基准数据集的令人鼓舞的表现,并详细分析了每个重要组成部分的有效性。
translated by 谷歌翻译
在大多数现实世界问题中存在缺失数据,需要仔细处理,以保留下游分析中的预测精度和统计一致性。作为处理缺失数据的金标准,提出了多个归纳(MI)方法来解释归纳不确定性并提供适当的统计推断。在这项工作中,我们通过生成的对抗网络(MI-GAN)提出多种归责,基于深度学习(基于GAN的)多重归名方法,可以在具有理论支持的随机(MAR)机制下缺失工作。Mi-GaN利用最近在有条件的生成对抗性神经作业中的进展,并在归责误差方面表现出对高维数据集的现有最先进的估算方法的强大性能。特别是,MI-GaN在统计推理和计算速度的意义上显着优于其他估算方法。
translated by 谷歌翻译
学习的视频压缩方法在赶上其速率 - 失真(R-D)性能时,追赶传统视频编解码器的许多承诺。然而,现有的学习视频压缩方案受预测模式和固定网络框架的绑定限制。它们无法支持各种帧间预测模式,从而不适用于各种场景。在本文中,为了打破这种限制,我们提出了一种多功能学习的视频压缩(VLVC)框架,它使用一个模型来支持所有可能的预测模式。具体而言,为了实现多功能压缩,我们首先构建一个运动补偿模块,该模块应用用于在空间空间中的加权三线性翘曲的多个3D运动矢量字段(即,Voxel流量)。 Voxel流量传达了时间参考位置的信息,有助于与框架设计中的帧间预测模式分离。其次,在多参考帧预测的情况下,我们应用流预测模块以预测具有统一多项式函数的准确运动轨迹。我们表明流量预测模块可以大大降低体素流的传输成本。实验结果表明,我们提出的VLVC不仅支持各种设置中的多功能压缩,而且还通过MS-SSIM的最新VVC标准实现了可比的R-D性能。
translated by 谷歌翻译
背景技术分析运动和视频数据可以帮助识别可能的错误动作,导致机器人辅助手术中的次优外科医生性能和安全关键事件。方法开发针对识别任务和手势的刽子手和程序错误的标题,并评估从拼图数据集中缝合和针传递任务的干燥实验室演示。我们通过标记视频数据来表征示范的错误部分,以及在运动数据上使用分发相似性分析和轨迹平均来识别区分错误手势的参数。结果刽子手误差频率因任务和手势而异,与技能水平相关。每个手势中的一些主要误差模式通过分析特定误差的运动参数来区分。程序错误可能导致性能分数降低,并增加了演示时间,但也取决于手术方式。结论本研究提供了对依赖于上下文错误的见解,这些错误可用于设计自动化错误检测机制并改善培训和技能评估。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) for semantic segmentation is a promising task freeing people from heavy annotation work. However, domain discrepancies in low-level image statistics and high-level contexts compromise the segmentation performance over the target domain. A key idea to tackle this problem is to perform both image-level and feature-level adaptation jointly. Unfortunately, there is a lack of such unified approaches for UDA tasks in the existing literature. This paper proposes a novel UDA pipeline for semantic segmentation that unifies image-level and feature-level adaptation. Concretely, for image-level domain shifts, we propose a global photometric alignment module and a global texture alignment module that align images in the source and target domains in terms of image-level properties. For feature-level domain shifts, we perform global manifold alignment by projecting pixel features from both domains onto the feature manifold of the source domain; and we further regularize category centers in the source domain through a category-oriented triplet loss and perform target domain consistency regularization over augmented target domain images. Experimental results demonstrate that our pipeline significantly outperforms previous methods. In the commonly tested GTA5$\rightarrow$Cityscapes task, our proposed method using Deeplab V3+ as the backbone surpasses previous SOTA by 8%, achieving 58.2% in mIoU.
translated by 谷歌翻译